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A new approach is  p roposed  and an expres s ion  is obtained for  the es t ima t ion  of the intensi ty of 
longitudinal mixing in a channel of finite length. 

The following pr inc ipa l  d rawbacks  a r e  inherent  to the method of unweighted s ta t i s t ica l  m o m e n t s ,  which 
is  widely used for  the es t imat ion  of t i m e - i n v a r i a n t  p a r a m e t e r s  of models  of flowing sys t ems .  

1. The accu racy  of the calculat ion depends on the p r e sence  and configurat ion of the descending branch of 
the signal (the " ta i l " ) ,  where  the cu r r en t  va lues  of a concentrat ion per turba t ion  slowly approach the asymptote  
with t ime ,  which is c h a r a c t e r i s t i c  of the subjec ts  of chemica l  p rocess ing .  The role  of the "tail" as a source  
of e r r o r s  grows cons iderably  with an i nc rea se  in the o rde r  of the momen t  being calculated.  T h e r e f o r e ,  only 
the f i r s t  and second s ta t i s t i ca l  m o m e n t s  a r e  used  in the de te rmina t ion  of the p a r a m e t e r s  of the model ,  i . e . ,  a 
m a x i m u m  of two p a r a m e t e r s  a r e  es t imated .  

2. The calculat ion of the m o m e n t s  (usually through the d i sc re t e  r ep resen ta t ion  of a continuous signal) 
occupies  a cons iderable  t ime.  Since the e f fec t  of the t ime  fac tor  is not compensa ted  for  by a weight f ac to r ,  
the use of quadra tu res  of the Gauss ian  type with nonequidistant  nodes [1] is ineffective in the calculat ion of the 
moment s .  

3. The volume of calcula t ions  i n c r e a s e s  sharp ly  in the es t imat ion  of the mixing p a r a m e t e r s  in a finite 
channel ,  e spec ia l ly  in the case of an impulse  pe r tu rba t ion  of a r b i t r a r y  f o r m  [2]. 

4. When the f i r s t  two m om en t s  a re  used it is imposs ib le  to t e s t  the sui tabi l i ty of the adopted model ;  the 
l a t t e r  is a s sumed  a p r i o r i  to be adequate [2]. 

The absolute contribution of the "tai l"  to the calculated momen t  is s o m e t i m e s  e s t ima ted  by postulat ing 
[3, 4] an exponential  c h a r a c t e r  for  the damping of the r e sponse  cu rves ,  which is just i f ied [5] for  open channels.  
However ,  this  assumpt ion  does not affect  a por t ion  of this l eas t  accura te  p a r t  of the signal.  

In the calculat ion of the k- th  m o m e n t  one can reduce the degree  of the t ime fac tor  by unity if instead of 
an impulse  pe r tu rba t ion  one imposes  on the s y s t e m  a s tepped signal  o r  a pe r tu rba t ion  growing with a constant  
ra te  [6]; in this case  the f i r s t  two momen t s  r e p r e s e n t  quadra tu res  or  an initial ordinate.  

The es t imat ion  of the p a r a m e t e r s  of a model ,  e spec ia l ly  for  open and semiconfined channels [7-13], is 
cons iderably  s impl i f ied  by the method of ha rmon ic  ana lys i s  and the synthes is  of s ignals  of a r b i t r a r y  f o r m  [14- 
16] with i ts  modif ica t ions  [17, 18], and by the method of weighted momen t s  [7, 8, 19]. These methods allow 
one to accompl i sh  the control led reduct ion of the influence of the "tai l ;"  m o r e o v e r ,  with thei r  use  (especial ly  
the fo rmer )  the zeroth  m o m e n t  c a r r i e s  a g r e a t e r  weight  of meaning.  Here  a lso ,  however ,  the choice of the 
upper  l imi t  of the working band of f requencies  in the ha rmonic  analys is  of the s ignals  and of the scale  fac tor  in 
the method of weighted m om en t s  r e m a i n s  v e r y  uncer ta in ,  which can lead to cons iderable  e r r o r s  in the values  
of the p a r a m e t e r s  being de te rmined .  These  two methods ,  as well  as the method of l e a s t  squa res  using a fas t  
Fou r i e r  t r a n s f o r m  with min imiza t ion  of the d i sc repancy  between the impulse  function of the s y s t e m  and the 
model  [20], which is c lose to them,  help to t e s t  the adequacy of the model  descr ipt ion.  

The ideas of the method of weighted momen t s  and the a n a l y s i s - s y n t h e s i s  concept  come together  in the 
Lague r r e  method of or thogonal  functions [21],  the eff ic iency of which was demons t ra t ed  in a r ep resen ta t ion  
of a flowing s y s t e m  by a se t  of v e s s e l s  for  total  mixing [19, 21]. In the p r e sen t  r e p o r t  this method is applied 
to the p rob lem of the identification of flowing s y s t e m s  in which the flow corr.esponds adequately to a diffusional 
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with the boundary conditions [22] 

ac 1 aZc ac 
a-T =-#-  a~ ax (ia) 

limc(x, t) = O, xE(O, ll; (lb) 
t ~ O  

c (0, t) = y, (t), y, (t) E D~; (lc) 

O_~c (1, t) = 0, (ld) 
dx 

where  P =uL/E L is the Pec le t  number ;  L is the length of the working sect ion of the channel; u is the veloci ty  Of 
the liquid in it; E L is the coeff icient  of longitudinal diffusion; c = C/C 0 is the d imens ion less  concentra t ion ,  equal 
to the ra t io  of the t rue  concent ra t ion  C to the r e f e r e n c e  concent ra t ion  Co; x = z / L  and t = ~/| a r e  the d imen-  
s ion less  coord ina te  and d imens ion less  t ime;  z is the  c u r r e n t  coordinate;  | = L / u  is the a v e r a g e  t i m e  of stay; 
and yl(t) is the concent ra t ion  pe r tu rba t ion ,  taken f r o m  a subspace  of d is t r ibut ions  D~_ of f inite o r d e r  [23]. 

The p r o b l e m  was  solved [22] us ing a Laplace  t r a n s f o r m ,  and the re fo re  it  is convenient  to de te rmine  the 
t r a n s f e r  function (the e curve) of the boundary p rob l em (1) at  x = 1 f r o m  the d i sp lacemen t  t h e o r e m  [23] 

e(t) = e(t ,  t )o - -eE(1 ,  s) = aK (s), 

where  

~=exp(P/2) ,  

(2) 

(2a) 

u ( t ) o -~ K (s) = (2b) 

The method of represen ta t ion*  of the expe r imen ta l  impulse  function ~(tl) on the bas is  of the r e co rd ed  
curves  Yl(t) and Y2(ti) of the input and output s ignals  through s e r i e s  expansions  by N orthogonal  Lagu e r r e  func-  
t ions ~i(t) and @i(tl), r e spec t ive ly  (i = 0, 1 . . . .  , N - 1), has  been demons t r a t ed  on the examples  of va r ious  
dynamic  subjec ts  [21], in p a r t i c u l a r ,  in the ana lys i s  of the concentra t ion p e r t u r b a t i o n - r e s p o n s e  curves  for  
liquid fluidized s y s t e m s  [24]. As in the ha rmon ic  ana lys i s  of dynamic s y s t e m s  based  on the data of the p e r -  
t u r b a t i o n b y a s i n g i e  impulse  and the reac t ion  to it  [25], for  the m o r e  p r e c i s e  r ep re sen t a t i on  of the output s i g -  
nals  in the f o r m  of L a g u e r r e  s e r i e s  the i r  t ime  r e f e r ence  points a re  shifted to a point p reced ing  the f i r s t  de -  
p a r t u r e  of these  s ignals  f r o m  the background level  (the null): 

t i = t - -  d 0, (3) 

where  d o = rd / |  is the re la t ive  delay of the signal;  r d is the t rue  t ime delay or  "dead ~ t ime.  

With a fixed value of the t ime  sca le  f ac to r  a > 0 the Lague r r e  functions of the zeroth  and f i r s t  o r d e r s  have 
the f o r m  

�9 . ; )  

(o  + )  (, o,, 
The coeff icients  Pi  a n d q i  to the L a g u e r r e  functions a re  e x p r e s s e d  through the imprope r  in tegra ls  i Y(t)~i(t)dt" 

0 

As ye t  there  a re  no c l ea r  r ecommenda t ions  in the l i t e ra tu re  concerning the choice of the scale  a and of 
the h ighes t  o rde r  N - 1 of the L a g u e r r e  functions.  To fill  in this gap in t e r m s  of the boundary p rob lem (1) we 
de te rmine  the coefficients:  

�9 Here  and l a t e r  the tilde sign pe r t a ins  to the expe r imen ta l  function; its absence  co r re sponds  to the model  
descr ip t ion  of this function. 
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ao  

li = ~ .I x (t, + do) ~F~ (t,) dtl, 
o 

neglecting the behavior of the function ~(t) in the "dead ~ time segment [0, do). We confine ourselves to the first 
two terms in the Taylor series expansion of the function ~t(t) and use Laplace-transform theorems on the finite 
value and on the integration of the inverse transform: 

Cf, s~O s-~O 

where 

L e t i = 0 .  Then 

V~ (s) O--o v~ (t,) = [}{ (tO + do}{' (t,)l 1F~ (t,). (6) 

1 
- -  l o = l i m  Vo (s).  (7)  

Cf, s~O 

To seek the t r ans form V0(s ) we apply the theorems on damping and on the differentiation of the inverse t r ans -  
form:  

,,,, 

Designating 

and substituting Eq. (8) into (7), we obtain 

1 / 0  V_aKo(1 +_~_)" (9) 
(Z 

Let i = 1. To calculate Vl(s ) we use the theorems indicated above and the theorem on the differentiation 
of the transform: 

v, (t ,)= [• (t,)] I/a{1--a&) exp (-- 2tO -'----Vo(t,)--adot,•176 ( s -t- 2)-t- 
(I0) 

i , . 

The second t e rm in braces  is close in s t ructure  to V0(s): The only complication is introduced by the auxil iary 
factor  

To facil i tate the analysis  we introduce the following functions in accordance with Eq. (2b): 

P a 

To shorten the notation we designate Z' = dZ/dQ and B = P/2. In this case the derivatives (with respect  to the 
complex variable s) of the functions introduced above are writ ten in the form 

~, P 
2]/-Q ' 

z'  (s)= z'Q ~ = ~' t(e + ~)chV-~+Vqsh  V-~J, 
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so. that 

z -Yqz' 
Z 2 -~ 

hx --= Q' ] / ~  = [ 1  - -  }/Qhzs 1, 

where  AZs = Z'/Z. 
F or  the success ive  de terminat ion  of Vb(s), Vl(s), and the coe f f i c i en t / i  f rom Eqs. (10), (9), and (5) it is 

necessary, first of all to establish the limit of AZs as s --* 0: 

az = lira Z'._ = (B + 1) ch VB-(B + a) + ]/ 'B(B + - ~  sh VB (B + a) (11) 
~-o Z V-B(B+~chVB(B+a)+BshVB(B+a)  

In Eq. (11) one can avoid awkward t ranscendenta l  functions in future t rans format ions  by sett ing a = 1 .  Then 

Az, ~- Azl,,=I = VrBBI"I 

With such a time scale we have 

AE, ~ AKI'=, . . . .  
B 

B + I '  Vol~Vo(s)l,=l --- Ko,(1 +-~-) ,  

Vi,-----Vot(I+. d ~  B 
�9 I +  a_o 

2 

Substituting the quantity V01 into Eq. (7) and Vii =VII with i =I into (5) we obtain the unknown coefficients 
of the expansion of the impulse function for  the model:  

to, = lo1~=' = ~ ( 1 + -~- Ko,, 

l,,==l,la=l =cz l + 6 - - B + l  

(12) 

(13) 

where  5 = d0/(1 + d0/2). 
t ranscendenta l  functions and is suitable for  the sea rch  for  p a r a m e t e r s  of the model. 
adequately desc r ibes  the diffusion of a t r a c e r  in a channel,  then 

t0, = 7o 16=1, t ,  =7,1a=,. 

Then 

B 
~,----(~i= 1-~6--B4_---- ~. 

With the adopted t ime scale the ra t io  ~1 =/11//01 of these coefficients does not contain 
If the diffusional model  

(14) 

(15) 

Hence,  

We note that 6 -< ~l, with the case of 6 =~l corresponding to a regime of ideal s t r eam displacement.  

On the basis of the cor respondence  between the t r ans fo rms  and inverse t r ans fo rms  used in the analysis  
we were  confined to two t e r m s  in the expansion of the function ~t(t). In fact ,  only :)0 and ~l f rom the family of 
Laguer re  functions were  needed in the derivat ion of Eq. (16); accordingly,  the f i r s t  two t e rms  in Eq. (6) were  
sufficient  to the Tay lor  se r i e s  expansion of ~(t  1 + do). We note that the inaccuracy in the descr ipt ion of the 
phenomenon of mixing in an actual subject  and the incompleteness  of the representa t ion  of the impulse function 
for the model i tself  by a family of orthogonal Laguer re  functions are  ref lec ted  less  in the smoothness of s ec -  
t ions  of the continuous curves  being compared  than in other  geometr ica l  cha rac t e r i s t i c s ,  including the curva-  
ture .  
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Equation (16) was  tes ted  in a calculat ion of the effect ive  Pec le t  number  P fo r  a combined flowing s y s t e m  
consis t ing of a zone of ideal d i sp l acemen t  followed by a finite number  of sect ions  of ideal mixing of equal  vo l -  
umes .  Let  d o = 1/3 for  this  model  s y s t e m  and le t  the number  of s ec t ions  of ideal mixing equal three  [26]. Fo r  
the adopted model  (1) the value of the Pec le t  number  found [26] using the f in i te -d i f fe rence  approximat ion  by the 
mpthod of l ea s t  squa res  is P =1324. Calculat ions made for  the same  model  sy s t em by the method p roposed  
in the p r e s e n t  work  give al =2/5,  6 =2/7,  and 1 ~ = 15.5. 

One can a s c e r t a i n  that  owing to  the s impl ic i ty  of Eq. (16) the l imi t ing  stage in the numer ica l  e s t imat ion  
of the Pec le t  number  P i s t h e  finding of the f i r s t  two coeff icients  Pi and ~i. F r o m  the point of view of the c o m -  
putation technique it  is be t te r  not to take the i m p r o p e r  in tegra ls  in the sca le  of the d imens ion less  t ime  t and in 
G a u s s - L a g u e r r e  quadra tures .  The point is that  impulse  s igna l s  have a finite durat ion,  which becomes  r e l a -  
t ively  smal l  for  l a rge  | so that  in working in the in te rva l  [0, ~) the integrand is reduced to ze ro  a t  a s e r i e s  
of nodes. M o r e o v e r ,  the exp re s s ion  inside the in tegra l  a l ready  includes the fac tor  exp (- l /2t) ;  the l a t t e r  a s -  
su r e s  good convergence  of the i m p r o p e r  in tegra l s ,  although s lower  than does the fac tor  exp ( - t ) .  

In the case  of unimodaI s ignals  it is m o r e  des i r ab le  to use  a G a u s s - L e g e n d r e  quadra ture  in the segment  
[ - 1 ,  1] with a unit  weight  fac tor  [1]. This  r equ i r e s  the change of va r i ab l e s  T =rT(1 + ~) so as to inscr ibe  the 
range  of in tegrat ion 2r T within the l imi t s  of a unit c i rc le .  The t rue  ha l f -dura t ion  rT of the impulse  is d e t e r -  
mined f r o m  the condition of matching  the f a r  r ight  node ~n with that  t ime T w when the signal can st i l l  d iffer  
f r o m  zero :  Yw > 0 {_Vw+l = 0). I t  is e a sy  to t r a c e  the sequence of fu r the r  a rguments  and t r an s fo rma t ion s  on 
the example  of the "input" Signal. The f i r s t  coeff icient  is 

2 r.c/o 2r,~ 

0 0 
1 2n  

0 Y~ {~ [~ (t)l} exp - -  ~ J=, 
- -1  

where  

cI)(~) = h(~)G(~j); h(~) = yi(~)exp - - - ~ -  ( I + 0  ; 

r~ A (~j). G (~j) = -~ -  

The nodes ~j and the weights  A(~j) connected with them have been tabulated [27]. 

We seek  the next coeff icient  in a s i m i l a r  way: 

= 0 j = l  

where  

h,(O = h(O 1 r__~_~ (1 + 0 - 

The numer i ca l  de te rmina t ion  of the coeff icients  q0 and ~1 for  the "output" signal Y2(tl) is ca r r i ed  out in the 
s ame  sequence (allowing, of cou r se ,  for  the cor responding  ha l f -dura t ion  r T of the output signal). This  v a r i a b l e -  
t i m e  ve r s i on  p e r m i t s  the use  of al l  the nodes of the G a u s s - L e g e n d r e  quadra tu re  r e g a r d l e s s  of the durat ion of 
the signal.  Since the eff iciency of this quadra ture  is usual ly  i l lus t ra ted  [1, 27] on the example  of monotoni-  
cal ly vary ing  funct ions,  i t  is des i r ab le  to in tegra te  the unimodal s ignals  sepa ra te ly  in two segments :  up to the 
point T m of the m a x i m u m  with r r  = Tm/2 and a f t e r  i t  with r T = (T w -" Tm)/(1 + ~n), and to sum the r e su l t s  of the 
numer i ca l  integrat ion.  

The use  of the method of L a g u e r r e  functions al lows one to obtain the in tegra l  e s t ima te  (16) for  the Pec le t  
number  P without neglect ing in the ana lys i s  of the expe r imen ta l  data e i ther  the al lowance for  the p r o p e r t i e s  
of the f l o w i n g - s y s t e m - m e a s u r i n g - i n s t r u m e n t  complex [28] o r  the a p r i o r i  informat ion on the o rde r  of magn i -  
tude of the e s t ima ted  quantity in using the numer i ca l  s ta t i s t ica l  cha r ac t e r i s t i c s  of the impulse function of the 
s y s t e m  [29]. Such an approach  is  advantageously dis t inguished by a considerable  economy of computer  t ime.  
To fu r the r  ref ine  the e s t ima te  of P and to t e s t  the adequacy of the model  it is des i rab le  to use  the method of 
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l e a s t  squa res  with a quas i -Newtonian method of min imiz ing  the d i sc repancy  between the model  and the r ea l  
s y s t e m  [20]. In this case  the e s t i m a t e  obtained by the method of L a g u e r r e  functions (close to the method of 
weighted moments )  will be a good init ial  approximat ion .  

Thus ,  the suggested approach  allows one to i nc r ea se  the accu racy  in the de te rmina t ion  of the longitudi-  
nal mixing p a r a m e t e r  of a confined s y s t e m  (in con t ra s t  to the method of s ta t i s t i ca l  moments )  and to con-  
s ide rab ly  s impl i fy  the p r o c e s s  of i ts  calculation.  In this case  it  is enough to have avai lable  only two L ag u e r r e  
functions for  the subjec ts  under  cons idera t ion  and to take the t ime  scale  of these functions as equal to unity. 

a 

A( j) 
C 
c 

Co 
do 
D$ 
e(t) 
E(I, s) 

EL 
h i and h 2 
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tm 
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X 
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NOTATION 

is the t ime  sca le  f ac to r  of L a g n e r r e  functions;  
a r e  the weights of G a u s s - L e g e n d r e  quadra ture ;  
is the t rue  concentra t ion;  
is the d imens ion les s  concentra t ion;  
is the r e f e r e n c e  concentra t ion;  
is the re la t ive  delay of output s ignals ;  
is the subspace  of d is t r ibut ions  of finite o rde r ;  
is the impulse  function for  the s y s t e m  of equations (1); 
is the t r a n s f e r  function for  the s ame  sy s t em;  
is the coeff icient  of longitudinal diffusion; 
a r e  the functions for  computat ion of coeff icients  P0 and q0 and coeff icients  Pl and ql,  r e spec t ive ly ;  
is the ordinal  number  of node in G a u s s - L e g e n d r e  quadra ture ;  
is the length of working sec t ion  of channel; 
a r e  the coeff icients  of L a g u e r r e  expans ions  of functions e(tl) ,  Yl(t), and Y2(ti), r e spec t ive ly ;  
is the number  of t e r m s  in L a g u e r r e  expans ions  of the s ignals ;  
is  the number  of nodes in G a u s s - L e g e n d r e  quadra ture ;  
is the Pec le t  number ;  
is the ha l f -dura t ion  of s ignal;  
is the complex  va r i ab le ;  
a re  the d imens ion les s  t ime  for  s ignals  a t  input (Yl) and output (Y2 and e); 
is the t ime of appea rance  of m a x i m u m  point of signal;  
is the veloci ty  of liquid in channel; 
is  the d imens ion les s  coordinate;  

, 

a re  the functions desc r ib ing  an a r b i t r a r y  input signal (x = O) and the r e sponse  to it  (x = 1); 
is the t rue  coordinate ;  
is the constant  mul t ip l i e r  of t r a n s f e r  function; 
a r e  the logar i thmic  de r iva t ives  of complex  express ions ;  
is the integration variable in the interval [-i ,  I]; 
is the average time of stay of liquid in channel; 

a re  the va r i ab le  mul t ip l i e r  of t r a n s f e r  function and i ts  Laplace  inve r se  t r a n s f o r m ;  
is the j - th  node in G a u s s - L e g e n d r e  quadra ture ;  
is the ra t io  of coeff icients  of Lague r r e  s e r i e s  expansion of impulse  function; 
is the r ea l  t ime;  
is the r ea l  signal delay t ime;  
is the r ea l  t ime  of appearance  of s ignal  max imum;  
is the L a g u e r r e  function of i - th  o rde r .  
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N U M E R I C A L  STUDY OF L A M I N A R  

IN AN A N N U L A R  C H A N N E L  

V. V. T r e t ' y a k o v  and  V. I.  

S W I R L E D  F L O W  

Ya g o d k i n  UDC 532.527 

The effect of s tream rotation on the velocity distribution in an annular channel is studied by the 
numerical method. The degrees of swirling corresponding to the initiation of s t ream separation 
are presented as functions of the Reynolds number for different values of the geometrical param- 
eter  of the channel. 

I. It is known that the intensity of processes  of heat and mass  t ransfer  in annular channels and pipes in- 
creases  when swirled flows are used in them [1]. 

The attempts at an analytical solution of such problems are connected with certain simplifying assump- 
tions. For example, the problem of the development of PoiseuiUe flow in a straight round pipe with s tream 
rotation was solved in [2]. It was assumed that the changes in the flow caused by this rotation are small. This 
allowed the authors to solve the problem in a linear formulation. An approximate calculation of the develop- 
ment of swirled flow of a viscous incompressible liquid in a cylindrical pipe was the subject of [3], where as-  
sumptions were made that the radial velocity component and its derivative with respect  to the radius are small,  
as well as the assumption that the axial velocity component differs little from its average value over the cross 

section. 

Another approach to the solution of such problems is the numerical integration of the equations of motion 
of a viscous liquid. The velocity profiles of swirled flow in a round pipe were calculated in [4] using the method 
of [5]. It was found that the assumptions of [2] are not always satisfied. 
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